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ABSTRACT
Consensus algorithms permit the computation of global statis-

tics via local communications and without centralized control.
We extend previous results by taking into account fading and
unidirectional links in ring and random 2-D topologies. We study
conditions for convergence and present simulation results to verify
the analytical results in this paper. We compare the performance
of consensus algorithms with a tree-based (centralized) approach.
Additionally, we implement a slotted ALOHA protocol and com-
pare its performance to that under the initial assumption of perfect
scheduling.

I. INTRODUCTION

In the classical distributed estimation problem, sensors make
noisy observations of a scalar. The (weighted) average of these
observations is a good estimate under many scenarios; this average
may be computed by nodes sending their estimates to a fusion cen-
ter (the centralized version), or by exchange of information between
nodes. The basic consensus problem addresses the convergence
of such schemes. Centralized approaches require the computation
of a tree, rooted at the fusion node, aggregation of data up the
tree, and dissemination of the consensus value down the tree. See
[1] for a discussion of issues and approaches related to scalable
aggregation and scalable inference. Re-computation of the tree
would be required under mobility, duty-cycling and fading. The
role of the fusion node may need to be rotated in order to avoid
single points of failure, and depletion of resources at the nodes
neighboring the fusion node. Decentralized approaches may be
preferable under these circumstances.

The distributed consensus problem is also of interest in several
military contexts. Wireless networks are becoming more prevalent
in tactical scenarios. Further, decentralized algorithms are desired
so that resource requirements are distributed throughout the net-
work. Olfati-Saberet al [3] briefly describe several military-relevant
applications that distributed consensus would improve. Flocking
theory and formation control techniques are applied to unmanned
vehicle platforms for obstacle avoidance and waypoint finding
tasks. With consensus, each agent or node would make heading
or velocity updates without centralized control. Consensus in dis-
tributed sensing environments would decentralize the requirements
of communication and computational costs. And consensus has
been used as a mechanism for decentralized network-wide time
synchronization.

Detailed discussion of the state-of-the-art may be found in
Section III. In the basic setup, nodesi = 1, · · · , n, have initial
estimates or measurementsxi(0), and the problem is to obtain a
common weighted average

∑

i
aixi(0) via decentralized exchange

of messages. Implicit is the notion of local exchanges in a one-
hop neighborhood (that, for example, may be defined by an SNR
threshold criterion on the received signal). In the literature the
analysis is often carried out by assuming that the underlying
connectivity matrix, or the neighborhood set is static, and, for
wireless applications, a random geometric graph is assumed [2].
Similar to [6], we consider a broadcast update, but unlike it,

we explicitly consider a fading channel and take into account
collisions. Coupled with an SNR threshold criterion, this leads to
a random neighborhood set. Under this model, the connectivity
graph is notsymmetric in any given snapshot (nodei may reliably
receive nodej’s estimate but not vice versa), and the consensus
algorithm is not sum-preserving. We consider the convergence of
the consensus algorithm under various assumptions on the fading.
We also investigate an Aloha type random access scheme and
compare performance with tree-based approaches.

Our main contributions are in studying the effect of fading and
collisions on the performance of wireless consensus gossiping and
in comparing its cost (measured in terms of number of transmitted
packets or convergence time) with that of a tree-based approach.

II. MODEL AND ASSUMPTIONS
We consider a network ofn nodes with locations denoted byυi,

i = 1, ..., n. We consider fading, path loss and additive noise. The
fading process,g(t), is modeled as complex circularly symmetric
noise with zero mean and varianceσ2

g = 1. Let si(t) denote the unit
amplitude signal transmitted by nodei, andPo the fixed transmitted
power. Then the signal received at nodek from nodei in time slot
t can be written as

yk(t) = gki(t)

√

Po

dα
ik

si(t) + νk(t)

where gki(t) denotes the fading coefficient associated with the
transmission from nodei to nodek, νk(t) is AWGN with common
varianceσ2

ν , dik = dki is the distance between nodesi andk, and
α denotes the path loss exponent.

We assume that a transmission can be successfully decoded if the
SNR exceeds a thresholdSNRT . Let do denote the range below
which this threshold SNR is exceeded in a non-fading channel, i.e.,

SNRT =
Po

σ2
νdα

o

.

In the presence of fading, the effective transmission rangerg, i.e.,
the range at which the SNR threshold is exceeded, is random, due
to the randomness of the fadingg(·). Now, nodei can decode node
j’s transmission successfully if

SNRij := Po|gij |
2/σ2

νdα
ij ≥ SNRT ,

i.e., if |gij |
2d−α

ij ≥ d−α
o . Wheng(t) is complex Gaussian (Rayleigh

fading) |g|2 is exponentially distributed with parameter1, the
probability that nodej can successfully talk to nodei is

Pij = Pr( SNRij ≥ SNRT ) = exp

{

−

(

dij

do

)α}

.

Note that this does not take collisions into account.
Example 1: Ring Topology. Ifn nodes are uniformly distributed

on a ring with radius r, then

dij = 2r sin

(

π|i − j|

n

)

.
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Further, with mo = n

π
sin−1( do

2r
), where do is the nominal

transmission range,

Pr( SNRij ≥ SNRT ) = exp

{

−

(

sin(π(i − j)/n)

sin(πmo/n)

)α}

.

For a given fade value,|g|, the effective range is given implicitly
by

m = arg max
k

d0k, s.t. |g|2
[

d(mo)

d0k

]α

≥ 1 .

II-A. The basic consensus algorithm

At the end of oneround of transmissions, all nodes will update
their estimates, as

xi(t + 1) = [1 − mi(t)h]xi(t) + h
∑

j∈Ni(t)

xj(t) (1)

where t is discrete time,h is a coupling parameter,Ni(t) is the
set of nodes that successfully transmit to nodei in round t, and
mi(t) = |Ni(t)| is the in-degree of nodei. The parameterh is a
measure of stubbornness or stiffness: Smaller values ofh reflect
less confidence in neighbors’ estimates and lead to slow network
convergence. On the other hand, large values can lead to oscillations
and lack of convergence. We can allow the stubbornness factor to
be dependent on both the transmitting and receiving nodes,hij :

xi(t + 1) = [1 − µ
∑

j∈Ni(t)

hij ]xi(t) + µ
∑

j∈Ni(t)

hijxj(t)

which reduces to (1) whenµhij = h, ∀i, j. Note that the protocol is
synchronous, but the randomness in the network update is induced
by packets that are dropped due to fading or collisions.

In matrix form

x(t + 1) = W(t)x(t) (2)

where matrixW(t) is defined by

Wij(t) =







1 − µ
∑

j∈Ni(t)
hij i = j

µhij j ∈ Ni(t)
0 o.w.

(3)

Let A(t) denote the adjacency matrix,D(t) the diagonal matrix
of in-degrees, andL(t) := D(t) − A(t), the graph Laplacian. If
hij = h, ∀i, j, then

W(t) = I− hL(t) .

If links are bidirectional, instantaneous disagreement can be repre-
sented in terms of the Laplacian, as shown in [3], [4],

x
′(t)L(t)x(t) =

n
∑

i=1

∑

j∈Ni(t)

|xi(t) − xj(t)|
2 .

Thus, one can think of CA as a steepest descent algorithm. We
do not assume that links are bidirectional; hence neitherA(t) nor
L(t) is assumed to be symmetric.

Note that this formulation does not preclude simultaneous trans-
missions or receptions; collisions resulting in decoding failures
will simply not be used in the update equation: the corresponding
Wij = 0.

II-B. Assumptions on the Fading
We will consider the performance of our consensus algorithm in

(1), which we will call CA, under one of two different assumptions
on the fading:
(A1) All transmissions in a given round suffer the same fade; fading
is independent from round to round.
(A2) All fades are iid across transmitters and across rounds.

Assumption A1 is reasonable if the nodes are clustered and the
time for a full round of transmission is smaller than the channel
coherence time. Assumption A2 is reasonable when the nodes are
dispersed or the coherence time is small compared with the duration
of one round of transmissions. Note that we have not assumed any
specific distribution (such as Rayleigh) for the fading under A1-A2.

We do not need explicit assumptions on scheduling; however,
in this section, we assume that there are no collisions if nodes
transmit simultaneously. This may be achieved if nodes have multi-
packet reception capability , or proper scheduling is performed. We
illustrate the impact of collisions (in an Aloha-based scheme) in
Example 6 in Section VII.

Our CA in (1) is not sum preserving:
n

∑

i=1

xi(t + 1) =

n
∑

j=1

xj(t)

n
∑

i=1

Wij(t)

=
∑

j

xj(t)[1 − hmj(t) + hnj(t)]

wherenj(t) is the number of nodes that can successfully hearj
in round t, i.e., theout-degree of node j, and recall thatmj(t)
is the in-degree. In general,mi(t) 6= ni(t), although clearly
∑

i
mi(t) =

∑

i
ni(t),∀t. Under assumption A1, the fading is

fully correlated (i.e., all transmissions in a given round experience
the same fade); hencemi(t) = m(t) = ni(t); and CA is
sum-preserving. Under A2, themi(t) and ni(t) are independent
random variables. From the update equation in (1), we can conclude
immediately thatW(t)1 = 1; i.e., 1, the n × 1 vector of ones, is
always a right eigenvector ofW. However,1′W(t) 6= 1′ unless
the CA is sum-preserving. The connectivity graph is not regular
(i.e., all nodes do not have the same degree), and the in-degree
does not equal the out-degree, except under A1. Further note that
communication links are not assumed to be symmetric under A2.

III. RELATED WORK
There has been a resurgence of interest in characterizing consen-

sus and gossip algorithms following the seminal work of Xiao and
Boyd [5], in which a randomly selected pair of nodes exchange
and update their estimates at any given time slot. Conditions
for convergence in mean and mean-square are derived in [5]. In
Aysal et al [6], at a given instant, a single node broadcasts its
estimates and all nodes in its one-hop neighborhood update their
estimates; conditions for convergence in mean and mean square
are derived, and update parameters are optimized. Instantaneous
consensus suffices when the focus is not on parameter estimation
per se but on arriving at consensus in some protocol: e.g., clock
synchronization, allocation of TDMA slots or hop frequencies.
Barbarossaet al [7] consider the consensus problem on a regular
ring topology and derive convergence conditions. Vankaet al [8]
also consider the problem in a ring topology and in a 2-D topology.
In the preceding papers, a static AWGN channel is assumed. The
average consensus problem under iid link and node failures has
been studied by Barooahet al [9], [10]. Wang and Elia [11]
establish conditions for convergence when the link drops are iid
and delays are link-dependent.

If the communication links are static, the update algorithm is
typically written asx(t + 1) = Wx(t) (see eq. 2), wherex(t) is
the vector of sensor estimates at timet. It is reasonable to assume
that in the absence of fading, the underlying graphGo and con-
sensus algorithmW achieve consensus; ifW is doubly stochastic



(which does not demand symmetry), then average consensus can
be achieved. Now fading causes link drops inGo, yielding G(t)
and henceW(t). Our algorithm in (2) is the biased compensation
method of Fagnani-Zampieri [12]. However, their results are not
applicable since they explicitly invoke the assumption that fades
are iid in time (at eacht, G(t) is drawn independently) and across
links; the latter assumption is equivalent to assuming that fades
between any pair of nodes is independent of all others. Pereiraet
al [13] consider a special case of [12] (the underlying graph is
fully connected; the iid fade process yields an Erdos-Renyi graph);
their weight matrix isW(t) = I − hL(t), where L(t) is the
graph Laplacian. Different from [12], they assume that the initial
measurement vector,x(0), is a random vector whose elements are
iid; they derive an expression for average MSE as a function of
iteration indexk, and optimize the value of the coupling coefficient
h. Because of the iid link activation,E{W(t)} is symmetric and
doubly stochastic. Link drop models are also considered in [14];
here the link drops are independent; the drop probability can be
link dependent, but links are assumed to be symmetric.

Noisy receptions over random topologies are studied in
[17]. Here, the coupling coefficients (the weights for “others-
information”) are time-varying, L2-summable but not L1-
summable. This persistence condition is required to ensure that
the estimate is consistent. The link failure model is general: the
Laplacian is iid in time and the mean Laplacian has non-zero
second eigenvalue. Link failures can be correlated in space. A signal
fading model rather than a link drop model is investigated in [18].
Here, the received signal is modeled asy(t) = gx(t)+ν(t), i.e., a
fading additive noise channel. The fades are assumed known to the
receiver andx(t) is binary (0,1). Consensus to the initialmajority
decision is sought.

We consider an SNR threshold model: a link is ‘on’ if the
received SNR exceeds a prescribed threshold. The design for a
nominal AWGN channel is assumed to yield a connected graph
Go on which consensus can be achieved (although note that what
is important is that the effective graph be connected: fading could
make a disconnected graph connected sufficiently often). Fading
induces link drops which are correlated; the link drop probability
is link dependent. We assume that the link drops are iid in time. We
do not assume the weight matrixW(t) or its mean to be symmetric.

Consensus over fading channels and the issue of deterministic
vs. random schedules has been considered in [19] and [20]. We
consider an Aloha based approach and compare performance to
that of tree-based approaches.

Our model is different from [12], [13], [16], as we do not assume
that link drops are iid (across links) or have the same probability of
drop for every link. (If the nominal design range isdo and path loss
factor isα, then a transmission to a noded away is successful, i.e.,
the link is on, if |g|2 > (d/do)

α; thus the link drop probability
depends upon the link. Further the link drops associated with a
given transmitter are correlated; if the link to a node at distance
d1 is off, links to all nodes farther thand1 are off; and if the link
to a noded2 away is on, links to all nodes closer thand2 are
on. Even if the fading coefficientg(·) associated with each link
is iid, the probability of a link drop would be link dependent as
in [14]). Different from [13] we assume that the initial observation
vector is deterministic. Different from [14], [15], we do not assume
symmetric links inG(t). Different from [17], our weighting of
others information does not decay with time and does not satisfy
the square-summability condition. Different from [18] the initial
node variables are not restricted to be binary. Our model generalizes
those in [6], [7] to include fading.

IV. CONVERGENCE TO INITIAL MEAN VALUE
Let W := E{W(t)} where the expectation is wrt the fading

process,g(t), equivalently, the effective rangerg. Now, from (3),
we obtain

W ij := E{Wij(t)} = hPij , i 6= j (4)

wherePij is the probability that nodej can successfully transmit
to nodei. Let Iij denote the indicator for successful transmission
from j to i. Then, fori = j,

Wii(t) = 1 − hmi(t) = 1 − h
∑

j

Iij(t)

W ii(t) = 1 − h
∑

j

E{Iij}

= 1 − h
∑

j 6=i

Pij := 1 − hmi (5)

wheremi is the expected number of updates received by nodei
(its mean in-degree).

Note thatW andW are right stochastic (row sums are unity). If
the channel between every pair of nodes is stochastically reciprocal,
i.e., Pij = Pji, ∀i, j, then W is symmetric (see (4)) and hence
doubly stochastic, i.e.,

∑

k
W kj =

∑

k
W ik = 1, ∀i, j. If h is

chosen such that1 − hmi > 0, ∀i, and if the fading process is
such thatPij > 0, ∀j 6= i, then all the entries ofW are positive.
The former can be assured by choosingh < 1/n. The Perron-
Frobenius theorem then applies, and we can conclude immediately
that the maximum eigenvalue ofW is unique and is given by1,
and that the absolute value of the other eigenvalues are all less
than unity. We can verify that1, the n × 1 vector of 1’s is the
eigenvector corresponding toλ = 1. Let J := 1

n
11′. It follows

that the eigenvalues ofW − J satisfy1

|λ(W − J)| < 1, ∀k . or ρ(W − J) < 1

whereρ(·) denotes the spectral radius.
If W is symmetric, i.e.,Pij = Pji, then the conditionsW1 =

1, 1′W = 1′, ρ(W−J) < 1 hold and suffice to ensure that [5],[6,
Prop 1]

E
{

lim
t→∞

x(t)
}

= Jx(0)

Remarks:
1) We have only made mild assumptions about the fading. To

ensure that the entries ofW are positive, we assumed that
Pij > 0, ∀i 6= j. If this condition does not hold, then the
entries ofW are only non-negative. The spectral radius of
W is still unity, λ1 = 12, but |λ| = 1 may be a repeated
root, which means that we cannot claimρ(W − J) < 1.
Rayleigh fading satisfies the assumptionPij > 0, as do other
fading processes. This assumption implies that there is a non-
zero probability that any two nodes can communicate. The
assumptionPij > 0, ∀i 6= j is sufficient, but not necessary,
as illustrated by Example 3 in Section VII.

2) We also assumed thatPij = Pji i.e., the fading is stochasti-
cally symmetric. We illustrate via Example 4 in Section VII
that this assumption is not necessary.

3) We did not need to invoke any of the assumptions A1-A2
on the joint distribution of the fading, i.e., fading may be iid
partially or fully correlated.

4) Under the stochastic reciprocity assumption,Pij = Pji

which is satisfied by our model under (A2),W is symmetric,
even thoughW(t) need not be symmetric∀t. LetQW (t) :=
∏t

k=1 W(t). Suppose thatQ(t) has rank 1, whence it can
be written asQ(t) = 1v′. SinceW(t) is stochastic∀t, it
follows that Q(t + 1) = W(t + 1)Q(t) = 1v′. Thus if
Q(t) is rank one and symmetric at somet, it remains so
regardless ofW(t + k), k > 0. Our conjecture is that if

1Details omitted due to lack of space
2We will assume that the eigenvalues are ordered so thatλk is the

eigenvalue with thek-th largest absolute value



W(1) is symmetric, thenQ(t) will be symmetric. We test
this in Example 5 in Section VII.

Thus, we have established:
Result 1: The consensus algorithm in (1) converges to the average
initial value, if h < 1/n and the fading satisfiesPij = Pji > 0,
∀i 6= j.

V. CONVERGENCE IN SECOND MOMENT
We saw that CA converges in the mean; in this section, we

will establish convergence in mean-square. First we consider con-
vergence to the instantaneous averagex̄(t) = Jx(t). Define the
instantaneous error as̃x(t) = x(t) − x̄(t) = [I − J]x(t).

If λmax (E {W(t)′(I− J)W(t)}) < 1, then Lemma 3 of [6]
assures us that CA converges in mean-square:

E{||x̃(t)||22} → 0 .

Our CA is sum-preserving under A1; and Lemma 3 reduces to
λ2(W) < 1, whereλ2 denotes the second-largest eigenvalue. We
verified this condition in the previous section. Thus, we consider
assumption A2 first. We can verify that the conditions of [6,
Lemma 3] are satisfied by the matrixW in (3), and establish the
following.

Result 2: Under A2, the consensus algorithm in (1) converges to
the instantaneous average in mean square, ifh < 1/n and
Y := E{W′(t)JW(t)} has full rank.

We believe thatY would have full rank if the degree distribu-
tions (the distribution ofmi(t)), is identical for all the nodes.

VI. CENTRALIZED VS. DISTRIBUTED
Even for a static topology, we only have asymptotic convergence

results. To measure the convergence time in [21] the authors
introduced theǫ-averaging time which, in settings similar to ours,
has been shown to grow asO(n2). In contrast, one can create a
tree in a decentralized fashion, pass values to the root of the tree,
and then distribute the consensus value, with a finite number of
exchanges. The price paid is clearly that of finding the appropriate
routing tables. One should be able to characterize the expected
latency for this (at least via bounds). For the case of link failures,
one can compute the average wait time (number of retransmissions
required) and thus bound the expected latency.

We consider a simple distributed tree algorithm similar to ones
that have been used for network time synchronization in wireless
sensor networks, based on the fact that nodes must first learn the
local topology before a distributed tree can be found. Fading is
ignored during the formation of the tree. The root node broadcasts a
level 0 beacon; one hop neighbors then take turns to transmit level
1 beacons. Nodes that have already heard a beacon ignore later
ones. It is clear that all nodes will take turns to transmit beacons;
thus n beacons will be transmitted. Further, an ACK mechanism
is required so that each parent knows how many children it has;
there will be (n − 1) ACKs. Thus the total number of packets
for tree formation is2n − 1. We have ignored scheduling issues.
Each node will transmit a packet to its parent that contains the
average value of the incoming data and its in-degree. ACKs are
assumed, and retransmits will occur until successful transmission.
If p denotes the probability of link success, then the average number
of retransmits is1/p. A total of (n−1) successful transmissions is
required for aggregation at the fusion center. Withpmin denoting
the probability of success over the weakest link, an upper bound on
the expected number of packets isn + n/pmin, making the usual
assumption that ACKs are perfect. The root will then compute the
average, which will then be disseminated down the tree. Again
ACKs are required and a node will retransmit packets until all its
children can successfully decode it. The average number of packets
can be upper-bounded byn + n/pmin. Thus the average number

of packets for tree formation, aggregation, and dissemination can
be upper-bounded by2n(2 + 1/pmin).

VII. SIMULATION RESULTS
Example 2: We implemented the consensus algorithm over a

2D random network, withn = 100 nodes, coupling parameter
h = 1

2n
, path loss exponentα = 2, nominal transmission range

r0 = {0.1, 0.3, 0.5}. Figure 1 shows MSE vs. #iterations for a
Monte Carlo simulation overK = 50 topology realizations. As
expected convergence is faster when the ranger0 is larger, i.e.,
when the network is more connected.

Example 3: In Section IV, we showed thatPij > 0, ∀i, j,
is a sufficient condition for convergence in the mean. However,
this is not a necessary condition (see Remark 1 in Section IV).
To demonstrate this, we simulated CA across a ring network.
(There is no compelling reason to run a consensus algorithm on
a ring network, since faster convergence to average consensus
can be achieved by simple token passing to the nearest neighbor
in, say, the clockwise direction. We use a ring network only to
obtain insights.) Figure 2 shows the empirical log(MSE) from
a Monte Carlo simulation (K = 50). The network consisted of
nodes uniformly placed on a ring, with parameters: network size
n = 100, update parameterh = 1

2n
, nominal rangem0 = 20, path

loss exponentα = 2 (black curve),α = 6 (blue curve). The red
curve corresponds to the case where the range is chosen randomly
over Unif[0, 20]. This corresponds to the case where some of
the Pij ’s are zero (see Remark 1), indicating that the condition
Pij > 0 ∀i, j is not necessary. As expected, convergence is slower
when the path loss exponent is larger (connectivity is weaker).

Example 4: This example verifies Remark 2, that the condition
Pij = Pji, ∀i, j is only sufficient, not necessary. Figure 3 shows
log(MSE) vs. iteration for a 2D network withn = 100, a = 3
from a Monte Carlo simulation (K = 50). Connectivity within
the network is determined byP , wherePij ∼ Unif [0.01, 0.70].
20% of the off-diagonal terms (i.e., links) were turned off (set to
0). The figure shows that the consensus algorithm will converge
to the initial mean value. The case wherePij ∼ Unif [0.01, 0.70]
(i.e., Pij > 0) is also shown in Figure 3. Convergence is faster in
the latter case, as expected.

Example 5: This example tests the conjecture in Remark 4,
that if W(1) is symmetric, then convergence could be faster. We
implemented the consensus algorithm over a ring topology, with
n = 101, α = 3, and nominal transmission rangem0 = 10.
Figure 4 showslog(MSE) vs. number of iterations for a Monte
Carlo simulation (K = 50). In this example,W(1) is forced
to be symmetric (Wij(1) = Wji(1)); in subsequent rounds,
unidirectional links are allowed, i.e.,W(t) need not be symmetric.
Figure 4 shows that convergence is faster than in the baseline case
where symmetry is not enforced onW(1).

Example 6: In this example, we adopt a standard slotted
Aloha protocol for medium access. As before, a SNR threshold
is assumed; simultaneous transmissions may or may not lead to
successful transmissions in this case. We consider the performance
of the consensus algorithm with respect top, the probability
that a node chooses to broadcast in each time slot. Figure 5
shows the number of time slots necessary to achieve consensus
within an error thresholdτ vs. the Aloha parameterp in a 2D
random network withn = {50, 100, 200}, α = 3, r0 = 0.1,
SINRT = 2, and τ = 0.01. Also, each simulation is run for
T = 10000 time slots or until the MSE falls below the threshold.
The dashed line shows the number of packets that are successfully
decoded (by at least one node); the total number of transmitted
packets can be estimated aspnT ; results shown are averages
acrossK = 100 realizations of the topology and initial values.



For larger networks, the choice ofp becomes critical and using
a slightly larger value ofp is better than choosing a smaller
value: the benefit due to fading outweighs the loss due to collisions.

Example 7: We compare the energy consumption of the con-
sensus algorithm with that of the tree-based approach. Figure 6
shows the total number of transmitted packets required to achieve
consensus withinτ error vs. the nominal communication ranger0.
The # packets required for the tree-based algorithm are shown, as
well as those for CA with perfect scheduling and for the Aloha-
based approach. Figure 7 shows a histogram comparing the total
number of transmitted packets for the case wherer0 = 0.3.
Parameters werep = 0.02, SINRT = 2, τ = 0.01, n = 100,
K = 100, T = 5000. The total required number of transmitted
packets for the consensus approach is determined by scaling the
number of iterations required by the size of the networkn,
which results in the discrete plot entries. The apparent discrete
distribution of the Aloha-based approach is due to the interval
chosen for the histogram. It is seen that the tree-based approach
consumes less energy than CA when the nominal range,r0, is large
enough to ensure sufficient connectivity to establish a tree. When
r0 falls below this threshold, the tree-based approach fails, but
CA can still achieve consensus. As the nominal communications
range increases, connectivity improves and CA requires fewer
packets, and so does the Aloha-based approach. Notice that random
scheduling requires about twice the number of packets as does
perfect scheduling.
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Fig. 1. Example 2: MSE vs. time for a random 2-D network;ro is
the nominal transmission range.

VIII. CONCLUSIONS

We studied the convergence of consensus algorithms when links
are not symmetric. We showed that some gain can be obtained
by selectively choosing bidirectional links. We also show that the
link probability need not be non-zero in order for the consensus
algorithm to converge. We compared the performance of an Aloha-
based scheme with that under perfect scheduling, and we investi-
gated the relative performance of consensus-based algorithms with
tree-based algorithms in a fading environment. We showed that
the tree-based algorithms can incur less communications cost than
consensus algorithms except provided that the nominal communi-
cations range is large enough to permit the establishment of a tree.
A possible extension is to use geographic gossip type protocols,
which include some routing; this will probably exhibit a behavior
which mediates between the robustness of consensus and the speed
of the tree approach.
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Fig. 2. Example 3: MSE vs. time for a ring network

0 50 100 150 200 250 300
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

 

 
Case 1: P

ij
 ≥ 0

Case 2: P
ij
 > 0

t

lo
g
(M

S
E

)

Fig. 3. Example 4: MSE vs. time for a 2D random network with
asymmetric link probabilitiesPij ; the solid line corresponds to the
case where some of thePij are zero.
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Fig. 4. Example 5: MSE vs. time for a ring network. In Case 2,
only bidirectional links are used in round 1, so thatW(1) is forced
to be symmetric.
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Fig. 5. Example 6: Total time vs. Aloha transmission probabilityp
for a 2D random network;n is the number of nodes.
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Fig. 6. Example 7: Total # packets vs. nominal range for different
algorithms, for a 2D random network.
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